Обоснование параметров назначения поворотных лесопогрузчиков для работы в условиях холодного климата

П.Г.Колесников¹
Сибирский государственный технологический университет

АННОТАЦИЯ

В статье приводится обоснование основных технических показателей поворотных лесопогрузчиков для работы в условиях экстремальных температур.

Ключевые слова: поворотный лесопогрузчик, холодный климат, показатели назначения.

SUMMARY

The article provides the rationale for the major technical indicators of rotary loader to work in extreme temperatures.

Keywords: rotary loader, cold climate, indicators of destination.

Лесопокрытая площадь Сибирского и Дальневосточного регионов занимает более 77 % площади лесов Российской Федерации. Объем рубок на данных площадях составляет около 30 % всей заготавливаемой древесины.

На погрузке древесного сырья в виде хлыстов и деревьев с кроной применяются лесопогрузчики перекидного типа. Однако при переходе на сортиментную заготовку, а также при снижении объемов лесозаготовок эффективность таких машин существенно снижается из-за их ограниченных технологических возможностей. В этих условиях требуются более универсальные подъемно-транспортные машины с высокими показателями надежности и эргономики, обладающие более широкими технологическими возможностями.

Одним из направлений совершенствования лесных подъемно-транспортных машин является создание и освоение серийного производства поворотных лесопогрузчиков с переменным вылетом груза, оснащенных телескопическими стрелами. Это обусловлено рядом их достоинств, таких как улучшение условий труда оператора, повышение кинематической точности технологического оборудования, универсальностью и более широкими технологическими возможностями.

Основной показатель назначения лесопогрузчиков – грузовой момент. Для оценки необходимого грузово-

¹ Автор – доцент кафедры технологий и машин природообустройства. го момента поворотных лесопогрузчиков для работы в условиях холодного климата рассмотрим распределение деревьев по объемным группам и расчетные средние объемы хлыстов в данных регионах.

Таблица 1 Распределение деревьев по объемным группам и расчетные средние объемы хлыстов

	Про	з з				
Регион РФ	до 0,3	0,4÷0,8	0,9÷2	2,1÷4	4,1 и более	Средний объем хлыста, м ³
Тюмен- ская область	60,8	17,9	20,6	0,5	0,2	0,49
Том- ская область	68,6	15,5	15,4	0,2	0,3	0,42
Кеме- ровская область	70,7	13,6	14,8	0,8	0,1	0,41
Красно- ярский край	51,6	24,6	17,3	4,9	1,6	0,71
Иркут- ская область	52,3	20,8	20,4	5,0	1,5	0,74
Саха- линская область	63,9	19,9	15,2	0,8	0,2	0,48

Оценивая данные таблицы 1, видим, что основной запас древесного сырья, около 80 %, сосредоточен в хлыстах объемом до 0,8 м 3 . Из них 60 % занимают хлысты объемом до 0,3 м 3 , 20 % — хлысты объемом 0,4÷0,8 м 3 .

Далее оценим категории грунтов основных лесосырьевых регионов Российской Федерации по их эксплуатационным показателям.

Таблица 2 Категории грунтов по эксплуатационным показателям

Регион	Категории грунтов, %					
ГСІИОН	I	II	III	IV		
Тюменская область	6	15	19	60		
Томская область	8	24	43	25		
Кемеровская область	2	47	46	5		
Красноярский край	6	39	52	3		
Иркутская область	4	44	34	18		
Читинская область	13	46	23	18		
Амурская область	6	11	62	21		
Хабаровский край	12	41	30	17		
Сахалинская область	2	51	39	8		

[©] Колесников П. Г., 2010

Первая категория (сухие пески, каменистая почва) позволяет работать на лесосеке в течение всего года с небольшим перерывом в весеннюю распутицу.

Вторая категория (супесчаные почвы, мелкие суглинки) допускает многократный проход машин по одному следу. В периоды весенней и осенней распутицы их несущая способность падает, но летние осадки на проходимость машин влияют мало.

Третья категория (глинистые почвы, супеси с глинистыми прослойками) имеет повышенную влажность в течение всего теплого периода. Тракторы быстро разрушают растительный слой и образуют глубокие колеи.

Четвертая категория (торфянисто-болотные, перегнойно-глеевые почвы) наиболее неблагоприятна для лесоэксплуатации. В периоды дождей дороги становятся непроезжими, а в сухую погоду заполнены грязью.

Лесозаготовительная техника в России эксплуатируется в двух макроклиматических районах — с умеренным климатом (обозначение «у») и холодным климатом (обозначение «ухл»). Районы, в которых средняя из ежегодных абсолютных минимумов температура воздуха ниже 45 °C, относятся к районам с холодным климатом. Остальная территория, где ведутся промышленные лесозаготовки, входит в макроклиматический район с умеренным климатом, где средняя из ежегодных абсолютных максимумов температура воздуха равна или ниже плюс 40 °C, а средняя из ежегодных абсолютных минимумов температура воздуха равна или выше минус 45 °C.

Границы макроклиматического района с холодным климатом на территории Российской Федерации представлены на рисунке 1.

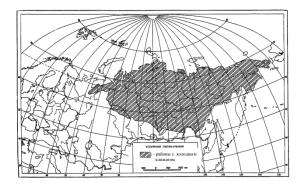


Рис. 1. Границы макроклиматического района с холодным климатом на территории Российской Федерации

Лесозаготовительные работы также зависят от множества климатических факторов. Основные из них — температура воздуха, осадки, ветер, снежный покров. Анализ климатических факторов изучаемых регионов представлен в таблицах 3 и 4.

Таблица 3 Распределение температуры и осадков в регионах Сибири и Дальнего Востока

Метеостанция	Средняя тем- пера- тура, °C		адков, мм	ность эзов, дни	Высота снеж- ного покрова	
	в январе	в июле	Среднее кол-во осадков, мм	Продолжительность устойчивых морозов, дни	средняя	максимальная
Архан- гельск	-12,4	15,2	459	138	_	_
Тюмень	-16,6	18,6	497	127	-	-
Томск	-19,2	18,1	517	138	73	87
Крас- ноярск	-17,7	19,9	351	117	35	57
Иркутск	-21,2	17,4	435	_	-	_
Хаба- ровск	-22,3	21,1	672	134	38	60
Влади- восток	-14,4	17,5	831	97	-	_

Таблица 4 Годовое распределение климатических показателей регионов Сибири и Дальнего Востока

	Среднее число дней в году с					
R						
		осадками				
Метеостанция	температурой - 40 ⁰ С и ниже	твердыми	жидкими	смешанными	сильным ветром (15м/с и более)	
Архан- гельск	0,05	97	76	24	8	
Тюмень	0,2	79	72	12	7	
Томск	1,1	94	68	10	20	
Крас- ноярск	0,9	69	72	11	13	
Иркутск	1,0	71	61	8	3	
Хаба- ровск	0,03	36	65	5	28	
Влади- восток	-	20	82	3	72	

В таблицах 3 и 4 знак «-» обозначает отсутствие данных.

Анализируя вышеприведенные исследования, можно сделать следующие выводы:

- 1. Средний объем хлыста заготавливаемого древесного сырья в регионах $P\Phi$ с холодным климатом составляет $0.54~\text{m}^3$.
- 2. При низких объемах лесозаготовок в системе лесотранспортных машин целесообразно применять форвардеры сортиментовозы, т. е. автомобили, предназначен-

ные для перевозки сортиментов и оснащенные манипуляторами с грузовым моментом 70 кНм. Это объясняется экономической эффективностью выполняемых работ — исключение из технологического процесса звена лесопогрузчиков, что экономит капиталовложения и повышает рентабельность работ.

- 3. В условиях промышленной заготовки древесины в системы лесотранспортных и нижнескладских машин целесообразно включить поворотные лесопогрузчики с грузовым моментом 160, 210кНм.
- 4. При формировании системы машин необходимо учитывать эксплуатационные характеристики грунтов регионов лесоэксплуатации для обеспечения условия проходимости лесных машин. Для I и II категорий грунтов допускается использование на верхних и нижних складах лесопогрузчиков на колесной базе, для остальных категорий грунтов гусеничная база.
- 5. При проектировании поворотных лесопогрузчиков необходимо учитывать климатические районы эксплуатации. Лесопогрузчики, предназначенные для эксплуатации в макроклиматических районах с холодным климатом, должны изготавливаться в северном исполнении (обозначение «ухл»).

Подводя итог, можно сказать, что для регионов РФ с холодным климатом поворотные лесопогрузчики, оснащенные манипуляторами, в зависимости от объемов лесозаготовок и природно-климатических показателей должны проектироваться со следующими характеристиками: грузовой момент — 70, 160, 210 кНм; база погрузчика — колесное или гусеничное шасси (в зависимости от категорий грунтов); климатическое исполнение «ухл» — для регионов с холодным климатом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Полетайкин В. Ф. Проектирование лесных машин. Моделирование рабочих режимов тракторных лесопогрузчиков / В. Ф. Полетайкин. Красноярск: КГТА, 1996. 248 с.
- 2. Александров В. А. Динамические нагрузки в лесосечных машинах / В. А. Александров. Л.: Изд-во ЛГУ, 1984.