# Влияние угла атаки лопастей на параметры сортирования волокнистой суспензии

В. А. Жилин<sup>1</sup>С. Б. Васильев

Петрозаводский государственный университет

#### АННОТАЦИЯ

Исследование эффективности гидродинамических процессов, происходящих в сортировках напорного типа, предназначенных для очистки волокнистых суспензий.

**Ключевые слова:** суспензия волокнистая, ротор, лопасть, сортировка напорная.

#### SUMMARY

The flowing-throw screen for pulp suspension cleaning processing efficiency is in focus. Rotor paddle slop influence on process investigation is under discussion.

**Keywords:** pulp suspension, rotor, paddle, flowing-throw screen.

#### СОСТОЯНИЕ ВОПРОСА

Процесс сортирования волокнистой суспензии является важной технологической операцией в производстве целлюлозы, бумаги и картона. В последние годы предъявляются особенно повышенные требования к эффективности очистки суспензии от посторонних примесей (костры, щепочек, коры и т. д.). Это вызвано вовлечением в производство все больших объемов древесинного сырья низких сортов. Создание высокоэффективных сортировок, отвечающих современным требованиям промышленности, невозможно без понимания физической картины процесса сортирования, его теоретических основ. Несмотря на целый ряд работ [19, 26] по теории сортирования, к настоящему времени теория сортирования волокнистых суспензий не разработана. Трудности создания теории связаны с тем, что волокнистая суспензия является двухфазной системой, в которой твердая фаза не обладает стабильными свойствами. С качественной стороны механизм процесса сортирования большинством исследователей представляется как гидравлическое истечение суспензии через отверстия сита сортировки с образованием на их поверхности так называемого «фильтрующего слоя» из костры, щепок и грубых волокон, который является дополнительным сортирующим элементом, способствующим повышению эффективности очистки волокнистой суспензии.

В работе [1] была выдвинута гипотеза о том, что «фильтрующий слой» образует дополнительную сетку над отверстиями сит и задерживает частицы с размерами значительно меньшими, чем величина отверстий. При этом, если плотность или сомкнутость слоя недостаточна, снижаются качественные показатели сортирования, если она велика, уменьшается производительность машины и возрастают потери волокна с отходами. Слишком большая величина отложившегося слоя может привести к тому, что прохождение волокон через него практически прекратится. Отсюда следует, что плотность или сомкнутость слоя не должна превышать некоторых оптимальных значений, вытекающих из требований к качественным показателям отсортированной массы и к производительности сортировки [10]. Подобные взгляды о влиянии слоя волокон на работу сортировки высказывают многие авторы [14, 22, 23, 24, 25, 27]. Некоторые исследователи [14, 20], не отрицая влияния дополнительного сортирующего элемента на процесс сортирования, говорят не о слое частиц на сите, а о зоне сортирования, примыкающей к поверхности сита и характеризующейся наличием в ней массы повышенной концентрации с повышенным содержанием костры. Так, в работе [11] говорится, что слой массы толщиной 3 мм около сита содержал большую часть отходов, что говорит о том, что в процессе сортирования отходы скапливаются на сите. Результаты исследования [24] позволили автору высказать предположение о том, что увеличение концентрации массы внутри сортировки происходит, прежде всего, в области, непосредственно примыкающей к поверхности сита. Поэтому работа сортировок в значительной мере определяется свойствами этого слоя.

В то же время анализ работы машин для сортирования волокнистой суспензии позволяет целому ряду авторов [1, 5, 17, 19, 20 26, 27] утверждать, что эффективность их функционирования поддерживается за счет полного или частичного разрушения слоя отсортированных частиц, образующегося на поверхности сита. Упомянутое разрушение осуществляется в результате пульсации напора массы на поверхность сита, создаваемого тем или иным способом [6]. В работе [27] авторы приводят результаты исследований процесса сортирования древесной массы в селектифайере модели 36Р и указывают, что очистка сита производится лопастями, имеющими форму крыла. При этом используется эффект снижения давления в потоке, обтекающем поверхность крыла, примыкающую к ситу. При снижении давления на кромке лопасти на величину, равную или большую перепада давлений, на сите происходит полное разрушение слоя волокон на сите под действием давления с обратной стороны сита и градиента скоростей суспензии перед ситом. При меньшем давлении на кромке лопасти происходит частичное разрушение этого слоя, так как в момент прохождения лопасти на сите остается положительный перепад давлений. Как считают авторы работы [26], пульсация напора суспензии перед ситом сопровождается обратным током суспензии через сито. В другой работе [17] высказывается противоположное мнение. Автор работы [17] считает, что об-

<sup>1</sup> Авторы — соответственно доцент и профессор кафедры целлюлозно-бумажных и деревообрабатывающих производств.

<sup>©</sup> Жилин В. А., Васильев С. Б., 2010

ратного потока суспензии через сито не возникает вследствие инерции движения и очень малой продолжительности действия импульса низкого давления. Последнее высказывание представляется более реальным.

В напорных сортировках, получивших торговую марку «центрисортер», очистка сита производится ротором цилиндрической формы с расположенными на нем полусферическими выступами [12, 24]. Высокая окружная скорость ротора (25–35 м/с) обеспечивает большую частоту пульсаций давления суспензии перед ситом, что способствует разрушению слоя частиц на сите [13]. Сортировка такой конструкции обеспечивает возможность тонкого сортирования длинноволокнистой суспензии концентрацией до 25 г/л при небольших перфорациях [23]. Конкретных экспериментальных данных о влиянии скорости вращения ротора, концентрации суспензии и перфорации сита на расход суспензии через него в указанных работах не приводится.

В работе [9] исследовалась пульсация давлений массы на сите лабораторной сортировки в зависимости от формы профиля лопасти, окружной скорости лопастей и величины перепада давлений массы на сите. Исследовались три разных профиля лопастей, изображенных на рисунке 1. Для всех трех профилей пульсации максимальная величина давления была одинакова и при скоростях 5-9 м/с составила 1,5-9,8 м в. ст. при перепадах давления массы на сите от 0 до 4,0 м в. ст. Наибольшая производительность при этом была достигнута с лопастями профиля I. Недостатком работы является узкий диапазон скоростей лопастей (в настоящее время сортировки работают со скоростями более 20 м/с), а также отсутствие аналитического обоснования выбора профиля лопа-

Следует отметить, что вопрос выбора профиля лопасти сортировок практически не освещен в научной литературе, за исключением работы [9], и поэтому требует специальных исследований.

### ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ПРОЦЕССА

Пульсация давления суспензии на сите происходит вследствие снижения давления на боковой поверхности лопасти при обтекании ее суспензией. Величина и продолжительность воздействия пониженного давления зависят от скорости обтекания лопастей и их формы. В механике жидкости и газа [8] величину снижения давления при обтекании профилей рассчитывают по методу комфортных изображений, рассматривая движение идеальной среды. При этом снижение оценивается коэффициентом давления  $C_p$ , определяемым выражением [8]:

$$C_p = \frac{p - p_{\infty}}{\frac{1}{2} \rho (V_{\infty})^2}, \tag{1}$$

где p — давление в задней точке профиля;

 $p_{\infty}$  – давление на бесконечном удалении от профиля;  $V_{\infty}$  – скорость потока на бесконечности.

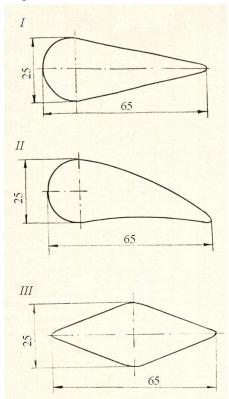



Рис. 1. Профили лопастей напорной сортировки

При обтекании цилиндра распределения давления на поверхности определим в форме [8]

$$C_p = I - 4\sin^2 \varepsilon \,, \tag{2}$$

где  $\varepsilon$  – угол, отчитываемый от передней критиче-

При  $\varepsilon = \pm \frac{\pi}{2}$  , т. е. в миделевой плоскости коэффициент давления приобретает максимальное значение.

На рисунке 2 приведены теоретическое и экспериментально измеренное распределение давления на поверхности цилиндра.

Причиной расхождения теоретического и фактического распределения давления служит невозможность безотрывного, плавного обтекания цилиндра реальной жидкостью. На самом деле цилиндр представляет собой плохо обтекаемое тело.

На рисунке 3 приведены кривые распределения давления по поверхности двух хорошо обтекаемых симметричных профилей Жуковского. Один профиль имеет относительную толщину  $t_b' = 15\%$ , другой  $t_b' = 40\%$ . Как показывают кривые, в этих случаях теория дает хорошее совпадение с опытом.

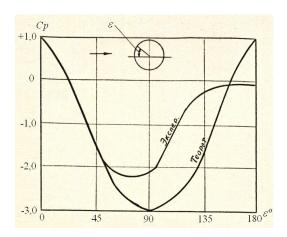



Рис. 2. Распределение давления на поверхности цилиндра

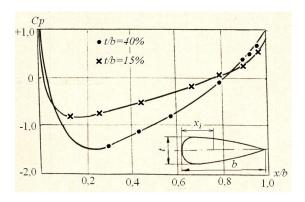



Рис. 3. Распределение давления на симметричном профиле Жуковского

Из рисунков 2 и 3 следует, что хорошо обтекаемый профиль обеспечивает понижение давления по сравнению с давлением на бесконечности на большей своей длине, хотя максимальная величина этого снижения несколько меньше, чем при обтекании цилиндра. В то же время величина снижения давления зависит от относительной толщины профиля. Поэтому, изменяя толщину и длину профиля можно изменять распределение давления, увеличивая или уменьшая максимальную величину снижения давления и продолжительность его воздействия на сито сортировки.

Определение подъемной силы крыла производится по формуле [8]:

$$R = 4\pi \times a \times m_{\infty} \times \rho \times |V_{\infty}|^{2} \times sin\alpha , \qquad (3)$$

где  $\alpha, m_{\infty}$  – коэффициенты;

 $\alpha$  – угол атаки крыла.

Из выражения (3) следует, что распределение давления на поверхности крыла зависит и от угла атаки. Таким образом, этот параметр следует обязательно учитывать при выборе формы и расположения лопасти сортировки. Теоретическое обоснование выбора профиля лопасти сортировки затруднено вследствие отсутствия математических зависимостей, описывающих связь пульсации давления с расходом суспен-

зии через сито. В работе [9] измерили пульсацию давления при различных скоростях лопастей и переменном перепаде давления суспензии на сите. Установлено, что амплитуда пульсаций зависит от скорости движения лопастей, но связь ее с перепадом давления на сите не установлена.

На основании изложенного, целесообразно профиль лопасти подбирать экспериментальным путем на основе теоретических положений обтекания крылового профиля, изложенного выше.

## ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Из анализа распределения давления на поверхности обтекаемого профиля следует, что это распределение зависит, в том числе и от угла атаки лопастей. Поэтому были проведены экспериментальные исследования на лабораторной установке с целью установления качественных зависимостей между углом атаки и степенью очистки сита. Для исследований использовалась сульфитная беленая целлюлоза концентрацией 15 г/л. Диаметр отверстий сит составлял 1,6 мм. Ротор сортировки был укомплектован лопастями формы II (рис. 1). Зазор между ситом и лопастями составлял 3 мм, скорость лопастей – 13 м/с. Угол атаки лопастей изменялся от -6° до +6° (рис. 4).

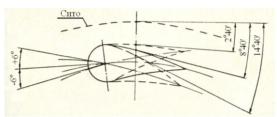



Рис. 4. Схема расположения лопастей относительно сита при изменении угла атаки

На рисунке 5 приведены графики зависимости объемного расхода отсортированной суспензии, потребляемой мощности и энергоемкости сортирования от угла атаки лопастей. Из графиков следует, что максимальный расход массы через сито обеспечивается при нулевом угле атаки. При этом увеличение угла атаки в положительную сторону приводит к более быстрому снижению расхода, чем увеличение угла атаки в отрицательную сторону. Мощность, потребляемая для привода ротора сортировки, возрастает в прямой зависимости от величины угла атаки лопастей, а кривая удельной энергоемкости имеет минимум при нулевом угле атаки.

На характер потока, обтекающего лопасть, большое влияние оказывает поверхность сита. Поэтому, наряду с углом атаки следует рассматривать гидродинамику потока в объеме, ограниченном поверхностью лопасти и поверхностью сита, которые в поперечном сечении образуют диффузор. Известно [11], что при увеличении угла конусности диффузора свыше критической величины, равной 7–10°, происходит отрыв потока от стенок. В исследованном случае угол конусности диффузора, образованного поверхностями сита и лопасти, изменялся от 2°40′ до14°40′. При этом

максимальный расход суспензии через сито соответствовал углу конусности, равному 8°40'. Уменьшение расхода с увеличением угла атаки можно объяснить отрывом потока от поверхности лопасти и сокращением, соответственно, продолжительности импульса снижения давления на сите, что приводит к ухудшению очистки сита. С другой стороны, уменьшение угла конусности менее 8°40' приводит к увеличению потери энергии потока в узком канале, что сопровождается снижением скорости обтекания лопастей и уменьшению величины снижения давления в зазоре. При этом также ухудшается очистка сита.

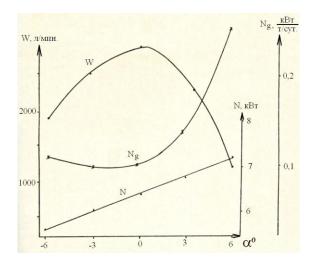



Рис. 5. Зависимость объемного расхода суспензии (W), потребляемой мощности (N) и энергоемкости ( $N_{\rm g}$ ) от угла атаки лопастей ( lpha )

Очевидно, величина конусности диффузора имеет какую-то оптимальную величину, обеспечивающую максимальный расход суспензии через сито. Анализ результатов лабораторного исследования позволяет сделать вывод о том, что при сортировании целлюлозы концентрацией 15 г/л угол конусности диффузора должен быть в пределах 7...10°.

#### СПИСОК ЛИТЕРАТУРЫ

- Ванчаков В. М. Новые конструкции вибрационных сортировок-узлоловителей / В. М. Ванчаков, П. П. Добровольский // Сб. трудов ЦНИИбуммаша, 1955. Вып. IV. С. 116–119.
- 2. Васильев В. Ф. Модернизация центробежной сортировки СЦ-2, 6-01 / В. Ф Васильев, Г. Ф. Личутина, Ю. И. Пахтусов и др. // Целлюлоза, бумага и картон. 1976. Вып. 26. С. 11–12.
- Жилин В. А. Исследование работы центробежных сортировок / В. А. Жилин, В. В. Корольков // Целлюлоза, бумага и картон. 1977. Вып. 8. С. 17–18.
- 4. Жилин В. А. Новая центробежная сортировка / В. А. Жилин // Целлюлоза, бумага и картон. 1976. Вып. 31. С. 5–6.
- Жилин В. А. Фракционирование макулатурной массы / В. А. Жилин, В. В. Корольков // Бумажная промышленность. 1981. № 7. С. 8–9.

- Кугушев И. Д. Сортирование бумажной массы / И. Д. Кугушев, К. А. Смирнов. М.: Лесная промышленность, 1971. 200 с.
- Кушин А. А., Терентьев О. А. Определение гидравлических сопротивлений сит с щелевой перфорацией / А. А. Кушин, О. А. Терентьев // Целлюлоза, бумага и картон. 1978. Вып. 26. С. 13–14.
- 8. Лойцянский Л. Г. Механика жидкости и газа / Л. Г. Лойцянский. М.: Наука, 1973. 848 с.
- 9. Смирнов К. А. Исследование процесса сортирования бумажных масс // Дисс. на соиск. ученой степени канд. техн. наук / К. А. Смирнов. Л.: ЛТИ ЦБП, 1966. 23 с.
- Смирнов К. А. Методика изучения процесса сортирования массы / К. А. Смирнов // Сб. трудов ЦНИИбуммаша. 1962. Вып. Х. С. 133–137.
- 11. Шлихтинг  $\Gamma$ . Теотия пограничного слоя /  $\Gamma$ . Шлихтинг. М.: Наука, 1974. 172 с.
- Benn W. Y., Uncatched shive / W. Y. Benn, I. J. Clarks-Pounder // Paper Trade Iournal. 1968. N. 7. P. 57–62.
- Carvill R. Pressurised screening of high consistency pulp / R. Carvill // Pulp and Paper Magasine of Canada. 1969. N. 2. P. 173–177.
- Cowan W. F. Producing screens HR / W. F. Cowan // Pulp and Paper Magazine of Canada. 1976. N. 11. P. 64–65.
- 15. Cowan W. F. Screening of groundwood / W. F. Cowan // Paper Marker. 1963. N. 6. P. 73–75.
- Hooper S. W. Plat screen for ground wood / S. W. Hooper // Pulp and Paper Magasine of Canada. 1968. N 9. P. 71–74.
- Ingermarsen J. Employment of uniscreen / J. Ingermarsen // Pulp and International. 1971. N. 5. P. 52–54.
- 18. Kubat J. Experimental improvement of statictic screening theory / J. Kubat // Svensk Papperstidning. 1956. N. 7. P. 43–46.
- Kubat J. Screning processes involving particle interaction / J. Kubat // Svensk Papperstidning. 1956.
  N. 5. P. 175–176, 177–178.
- Lamort D. Pulp screening problem / D. Lamort // Paper Trade Journal. 1973. N. 11. P. 34–38.
- Laru J. Double Effect Design Improvement in Pulp Screens / J. Laru // TAPPI. 1961. V. 44. N. 7. P. 188–191.
- 22. Lindgren K. New Developments in Screening Ahead of Paper and Board Machines / K. Lindgren // Paper Trade Journal. 1955. N. 18. P. 25–26.
- Pelletier H. E. Pressurized selective screening of Jouhern United states stone groundwood / H. E. Pelletier, R. E. Carvill // Pulp and Paper Magasine of Canada. 1974. N. 11. P. 79–86.
- Racine J. J. Pressurized screening of ground-wood / J. J. Racine // Pulp and Paper of Canada. 1971. N. 3. P. 143–147.
- 25. Screening of sulphite pulp / G. Ranhagen // Paper Trade Journal. 1954. V. 138. N. 1. P. 177–182.
- 26. Steenberg B. Theory of screening / B. Steenberg, J. Kubat // Das Papier. 1956. N. 5/6. P. 83–85.
- Sternby A. Ground-wood pulp fractionation and screening with pressure screens of high consistency / A. Sternby // TAPPI. 1961. V. 44. N. 6. P. 401–407.