Процесс лесозаготовок и образование лесосечных отходов

Harvesting process and logging residuals formation

О. Н. Галахтионов (O. Galaktionov)¹
e-mail: galaktit@pau.karelia.ru
М. А. Пискунов (M. Piskunov)
e-mail: piskunov_m@list.ru
Петрозаводский государственный университет

АННОТАЦИЯ
Приводятся результаты полевых исследований, посвященных специфике образования лесосечных отходов при выполнении основных лесосечных операций, а также воздействия работы лесосечных машин на сохранность подроста.

Ключевые слова: лесосечные работы, отходы лесозаготовок, подрост, сохранность подроста, повреждения подроста.

SUMMARY
The article presents the results of field research on specific features of logging residuals formation during main harvesting operations as well as on the impact of forest machines on undergrowth safety.

Keywords: harvesting, logging residuals, undergrowth, safety of undergrowth, damages to undergrowth.

ВВЕДЕНИЕ
В ходе выполнения основных лесосечных операций образуется значительное количество отходов (сучья, вершины, объемы хлыстов и др.). Эти отходы обладают характеристиками, среди которых выделяем:
- общее количество отходов;
- структура отходов;
- пространственное распределение отходов.

При этом на эти характеристики будет оказывать влияние (помимо прочих факторов), непосредственно технологическая схема основных лесосечных работ, реализованная посредством тех или иных типов машин и механизмов. В этой связи в качестве основной задачи выступает исследование влияния основного технологического процесса лесосечных работ на предмет специфики образования отходов. При этом, поскольку основные технологические схемы с позиции пространственного распределения лесосечных отходов могут быть классифицированы по двум признакам: 1) с формированием основного объема отходов на вершине и нижнем складе; 2) с формированием основного объема отходов на пасеках и волоках, рассмотрим основные различия по технологическим схемам, классифицируемым по второму пункту. Отдельно по некоторым технологическим схемам основных лесосечных работ целесообразно рассмотреть влияние работы машин на сохранность подроста. Выявление характеристик поврежденного подроста позволит рассмотреть его как классификационную группу в общей структуре лесосечных отходов.

Исследования проводились на лесозаготовительных предприятиях Республики Карелия. Выявлялись особенности для сплошных рубок главного пользования при работе в лесах 2 групп и для рубок ухода при сильной степени интенсивности (30% разведения древостоя). В первом случае исследования проводились в природно-производственных условиях ЗАО "Шуклас", во втором — в ЗАО "Лесма". Рассматривались различные технологические схемы с использованием гусеничной и колесной техники. Наблюдения проводились как при непосредственной работе машин, так и после окончания лесосечных работ.

УСЛОВИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ
Для сплошных рубок главного пользования рассматривались технологические процессы при трелевке сортировок на базе двух систем машин: харвестер (Timberjack 1370) и форвардер (Timberjack 1010B), а также бензопила (Husqvarna 254XP) и форвардер (Timberjack 1010B). При трелевке хлыстов рассматривался технологический процесс с использованием бензопилы на валке деревьев, обрезка сучьев после валки осуществлялась топорами, трелевка хлыстов за вершины — трактором с канатно-пожерным оборудованием (ТДТ-55А).

Технологический процесс при проведении рубок ухода осуществлялся по сортиментной технологии при использовании валюков-раскрежевщиков и форвардера (ЛТ — 189М). Работа по сортиментной технологии при сплошных рубках главного пользования осуществлялась в 18 кварталах Великолукского лесничества; лесотаксационные характеристики лесосек соответствовали при работе харвестера и валюков-раскрежевщиков: запас м^{3}/га = 239 и 240; средний объем хлыста, м^{3} = 0,27 и 0,25; состав насаждений — 1С2Е и 1С2Е6Б100. Рубка велась с сохранением подроста в количестве 900 штук на гектар, при этом сохранность подроста должна быть обеспечена на площади 10 и 7 га.

Работа по хлыстовой технологии осуществлялась в 128 кварталах Неламякского лесничества. Лесотаксационные характеристики: запас м^{3}/га = 294; средний объем хлыста, м^{3} = 0,27; состав насаждения — хвойное.

Исследованные лесосеки характеризуются глинистым типом грунта; местность в основном пересеченная — уклон 10-15 градусов, местами уклоны до 30 градусов.

Среди характеристик лесосеки, на которой проводились рубки ухода, можно выделить: запас м^{3}/га —
При разработке лесосечной системы машин характер + формовщик пасеки разрабатывались на ширину 25 м. Лесосечные отходы укладывались на волок, затем формовщик собирал сортировки и отвозил в штабеля на погрузочный пункт. При разработке лесосечной системы машин бензопила + формовщик в начале пробивался волок на всю длину пасеки, затем разрабатывались пасеки (шириной 25 м). В обязанности валщиков входило укладывать сучья на волок. Разработка по хлыстовой технологии осуществлялась следующим образом: Валщик разрабатывал пасеки под трелевку вершинной вперед, ширина пасек составляла 25 м. Валщик сучья снимал деревьев от сучьев топором. Затем трактор с канатно-чокерным оборудованием трелевал хлысты на погрузочную площадку. Слабые места волоков укреплялись лесосечными отходами. Работа по сортиментной технологии на рубках ухода предполагала назначение валщика-раскряжевщика деревьев для валки. После валки, обрезка сучьев и раскряжевка формовщик трелевал сортировки на вершине склад. Сучья после основных операций оставались на месте обработаны и специально не укладывались на волок.

Специфика обработания лесосечных отходов
При определении количественных параметров и параметров распределения лесосечных отходов по представительным схемам были выявлены следующие особенности. При работе харвестера на сплошных рубках незначительная часть лесосечных отходов оставалась на пасеках и терялась в ходе выполнения основных операций, а в то время как при валке, обрезке сучьев, раскряжевке бензопилой практически вся масса лесосечных отходов, обрабатываясь в ходе выполнения этих операций, складывалась на волоке. Использование бензопилы обладает ярко выраженой особенностью – лесосечные отходы в свою структуру включают большое число вершин деревьев достаточно крупных размеров. Были отмечены следующие средние размерные характеристики: средний диаметр – 8 см, средняя длина – 5 м. Следовательно, целесообразно рассмотреть возможность отдельной сортировки вершинных частей и формирования пачек на участках пасек, примыкающих к волоку, с дальнейшим сбором и переработкой. После работы харвестера такой группы лесосечных отходов не образуется, а если и образуется, то наблюдается пониженное качество, связанное с искривлением и уменьшением размеров сортировок, что не позволяет выделить их в отдельную качественную группу лесосечных отходов.

Как отмечалось выше, сортиментная технология характеризуется сосредоточением основного объема лесосечных отходов на волоках. Исследования показали, что практически все пространство волоков заполнено лесосечными отходами. При этом волока характеризуются отсутствием ярко выраженных эко-пления лесосечных отходов. В связи с тем, что лесосечные отходы занимают пространство волоков, образуется покрытие, которое препятствует в краткосрочном периоде восстановлению растительности на этих участках по сравнению с пасеками, где можно, наоборот, отметить обильное восстановление. Было отмечено также неорганизованное распределение лесосечных отходов по ширине волока. Наибольшая плотность наблюдается в центре волока (2–3-метровая зона), где формируется в среднем до 75% лесосечных отходов, оставшее приходится на края волока. Значительно меньшая доля лесосечных отходов приходится на участки, по которым осуще-ствляется проход колес. В связи с этим фактом создания хвостовой подстилки, которая и должна снижать воздействие лесозаготовительных машин на грунт, в исследуемых случаях не является очевидным. Характерной особенностью технологической схемы валки + обрубки сучьев + трелевка хлыстов вершинами вперед трактором с канатно-чокерной оснасткой является увеличение неконтролируемым потерям стволовой древесины в виде обломков хлыстов, деревьев. При использовании предыдущих схем потери стволовой древесины, если они имеют место быть, носят целенаправленный характер и могут быть управлеными, а при данной схеме эти потери указы-вают именно на несовершенство данного технологического процесса. Еще одной характерной особенностью является явно прослеживаемая зависимость распределения лесосечных отходов. При работе по этой схеме на волоках сосредоточивается около 55 – 57% лесосечных отходов, 43 – 45% остается на пасеках, причем при этом этих 43 – 45% значительная часть, около 65 – 70%, формируется в 5-метровой зоне, примыкающей к волоку. При удалении от этой зоны плотность лесосечных отходов резко уменьша-ется, составляя в центре пасек около 10%.

При сортиментной технологии при рубках ухода так-же наблюдается определенная специфика распределения лесосечных отходов. В отличие от сортимент-ных схем на сплошных рубках, здесь валщики-раскряжевщики не укладывают все лесосечные отхо-ды на волок. Сучья, ветви, стволовая древесина, фор-мировующие основную массу лесосечных отходов, остаются в местах образования. В связи с этим часть лесосечных отходов попадает на волок, другая часть остается на пасеках.

Повреждения подроста
Исследования на предмет сохранности подроста осу-ществлялись для сортиментной технологии. Для количе-ственной оценки сохранности подроста были выделены следующие признаки: количество повре-женного подроста и количество отпавшего в ходе основных операций подроста, то есть перешедшего в разряд лесосечных отходов. Все повреждения были разделены на группы: повреждения вершин (съем вершин), повреждения корней (обрыв корней), по-вреждения коры (опыт коры). Повреждения коры были поделены на три качественных уровня: боль-шой, средний, мальный.
Найбольшее количество поврежденного подроста наблюдалось после использования технологической схемы харвестер + форвардер. Подавляющее число повреждений носило характер опиума коры, местами осложненное повреждением корневой системы или вершины. При ручной валке количество повреждений существенно меньше. Количественные характеристики поврежденного подроста представлены в таблице 1.

<table>
<thead>
<tr>
<th>Технологический процесс</th>
<th>Параметр</th>
<th>Вид повреждения</th>
<th>площадь опиума коры</th>
<th>обрыв корней</th>
<th>слом вершин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Харвестер, форвардер</td>
<td>Количество подроста, % от растущих</td>
<td>13,0</td>
<td>17,0</td>
<td>19,0</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>Объем подроста, м³/га</td>
<td>2,9</td>
<td>3,9</td>
<td>4,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Бензопила, форвардер</td>
<td>Количество подроста, % от растущих</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Объем подроста, м³/га</td>
<td>0,46</td>
<td>0,23</td>
<td>0,7</td>
<td>-</td>
</tr>
</tbody>
</table>

К данным таблицы 1 необходимо добавить, что по- мимо поврежденного подроста, оставленного на до- ращивание, имеются деревья, которые были безвоз- вратно повреждены и в результате основных опера- ций перешли в разряд лесосеменных отходов. Если при работе харвестера общее количество таких деревьев составляет около 30% от сохранившихся, из которых значительная часть потерь носит не целесообразный характер, то при работе бензопилой — всего 6%, при этом все эти деревья были сведены и перенесены на волок. Необходимо также отметить, что в первые годы после рубок значительная часть подроста гибнет, поскольку молодые деревья — это главным образом ель, которая остается после рубок не защищенной подвой леса. Гибель значительной части подроста подтверждает осмотр лесосек, ранее разработанных таким же технологическими процессами и находящихся в аналогичных природных условиях.

При наблюдении за работой механизмов были выявлены следующие причины нанесения повреждений при лесозаготовках. Харвестер в основном наносил повреждения коры при наведении на дерево, причем чем ближе подрост расположен к поваленному дере- ву, тем больше вероятность повреждения (опиума). Повреждения при валке бензопилой носили такой же характер, но меньшей интенсивности, значительная часть повреждений наносилась при загрузке форварде- ра во время попыток удалять сортимент из грунта оставшегося подроста. Повреждения корневой сис- темы образовывались как при валке, так и в дальней- шем при работе форвардера. Обламывание сучьев не рассматривалось как повреждение, так как в основ- ном ломались отмершие сучья. При несплошной рубке отсутствовали сломы вершин и явные повреждения корней, оштампов коры носили поверхностный характер. Самое распространенное повреждение — слом сучьев. С точки зрения получения лесосеменного сырья — это положительное воздей- ствие (если не уступлена более сильными видами воздействия на подрост). Минимум повреждений объясняется большими промежутками между деревьями, большей толщиной коры, примерно равной высотой оставляемых и удаленных деревьев.

ВЫВОДЫ

Комплекс технологических операций по сбору лесосеменных отходов с целью дальнейшей их утилизации из-за различий в пространственном распределении и количестве лесосеменных отходов носит не однозначный характер: требуется дополнительное обоснование основных параметров и характеристик операций, входящих в этот комплекс, для увязки его с основной технологической схемой лесосеменных работ. Для схе- мы валки + форвардер целесообразно рассмотреть дополнительную сортировку вершинных частей деревьев, перешедших в отходы, с целью дальнейшего использования. Обоснование сохранения подроста практически невозможно, и, следовательно, необхо- димо уточнение мотивировки сохранения подроста. Поврежденный подрост может быть выделен в от- деленную классификационную группу в общей струк- туре лесосеменных отходов для схемы на базе харвесте- ра и форвардера. При использовании валки + фо- рядеров поврежденный подрост входит в класси- фикационную группу, состоящую из вершин деревьев. Также целесообразно рассмотреть проблему удаления лесосеменных отходов с волок с точки зрения лесного хозяйства и лесозаготовки.

25