Обоснование периодичности проведения регулировочных работ в двигателе семейства СМД методом определения вероятностных характеристик поведения прогнозирующего параметра

Мазуркевич М.А.1
Петрозаводский государственный университет

Рассматриваются вопросы обоснования периодичности проведения регулировочных работ газораспределительного механизма двигателя СМД-18ВН путем расчета вероятностных характеристик (вероятности безотказной работы, и периода эксплуатации, приводящего к резкому росту отказов).

Ключевые слова: вероятность безотказной работы, начальный размер деталей, предельный износ, наработка, зазоры, скорость изнашивания, газораспределительный механизм, техническое обслуживание.

Для двигателей внутреннего сгорания (ДВС) важной характеристикой является величина зазоров между впускным и выпускным клапанами и их толкателями (коромыслами). При нормальной величине зазора обеспечиваются заданные углы начала открытия и конца закрытия клапанов относительно ВМТ и НМТ поршней (фазы газораспределения), а значит, и оптимальные условия наполнения цилиндров воздухом. И динамика движения деталей механизма при этом. В процессе эксплуатации ДВС рабочие поверхности кулачков распределительного вала, толкателей, коромысел изнашиваются, что ведет к увеличению зазоров в клапанном механизме. По мере увеличения зазоров изменяются фазы газораспределения, нарушаются рабочий процесс, изменяется динамика движения деталей и повышается интенсивность изнашивания.

Правилами технической эксплуатации ДВС установлена периодичность выполнения данного вида регулировочных работ, в частности для лесных машин, наработке 300 м.ч. (при очередном ТО-2). Однако данные работы [1] показывают, что эта периодичность не является обоснованной, а критерием необходимости выполнения регулировок в клапанном механизме является повышенный шум в работе ДВС.

В этой связи обоснование периодичности регулировок зазоров в клапанах газораспределительного механизма (ГРМ) ДВС является актуальной задачей. Для обоснования периодичности регулировки зазоров в ГРМ двигателей лесных машин (в частности двигателя СМД-18ВН) воспользуемся данными вышеприведенной работы, в которой полученный экспериментальный материал использовался для расчета трудоемкости ТО-2 лесных машин. Обработка экспериментального ряда позволила получить зависимость скорости нарастания износа в клапанах ГРМ со следующими характеристиками: оценка математического ожидания скорости изнашивания (\(m_\varepsilon = 0.0008 \) мм/мочас), оценка среднего квадратичного отклонения (\(\delta_\varepsilon = 0.00017 \)). Начальный зазор в клапанах, по рекомендации работы [1], составляет 0.4. Изменение износа по пробегу подчиняется линейной зависимости типа

\[
y = b + a \cdot x,
\]

где

\[
a \text{ и } b \text{- эмпирические коэффициенты скорости изнашивания;}
\]

\[
x \text{- наработка (в моточасах).}
\]

Применяя допущения, изложенные в работах [2,3], представим процесс изнашивания в виде полуслучайного процесса, в котором случайной величиной является скорость изнашивания, а детерминированным параметром - время работы двигателя \(t \). Скорость изнашивания распределена по нормальному закону с вышеприведенными параметрами \(m_\varepsilon \) и \(\delta_\varepsilon \), критерий согласия Пирсона \(\chi^2 \approx 0.44 \).

За случайное событие, приводящее к отказу, примем момент пересечения кривых изнашивания величины износа \(U_{ep} \) (рис.1)

![Dia](https://via.placeholder.com/150)

\(U \) - величина износа, \(t_0 \), \(t_\varepsilon \) - участок нормальной работы.

Рис.1. Типичный вид закона изнашивания

Опушая математические расчеты, получаем функцию распределения плотности отказов \(f(t) \) в следующем виде, вновь названную Г.В. Дружиним \(\alpha \)-распределением.

\[
f(t) = \frac{B \cdot c}{t^2 \sqrt{2\pi}} \cdot \exp(-0.5) \left(\frac{B}{t} - \alpha \right)^2;
\]

\[
B = \frac{U_p \cdot p}{\sigma u}.
\]

1 Автор - доцент, зав. кафедрой тяговых машин
© М.А. Мазуркевич, 1996
\[\alpha = \frac{\mu_{uo}}{\sigma_u} \]

где
- т_0 - начальный зazor, мм;
- т_0р - предельный зazor, мм;
- \sigma_u - среднее квадратическое отклонение;
- \mu_{uo} - математическое ожидание скорости изнашивания.

Нормируемый множитель с в формуле (2) определяется по аргументам:

\[Z_1 = \frac{B}{t_2 - \alpha} ; \quad Z_2 = \frac{B}{t_1 - \alpha} ; \quad (3) \]

При \(\alpha \geq 2, \ c = 1 \), что является наиболее частым случаем для практики. В нашем примере \(\alpha = 4.7 \). Рассчитанный график функции плотности отказов \(f(t) \) для зазоров в клапанах ГРМ представлен на рис. 2.

Рис. 2. Функция плотности распределения отказов в клапанах ГРМ двигателя СМД-18БН

Анализируя график функции \(f(t) \), видим, что отказы в системе начинают возникать начиная со 170 м.ч. и достигают максимального значения к 280 м.ч., а к 460 м.ч. практически у всех ДВС, по данному параметру, наступает отказ. Для обоснования оптимальной величины наработки, при которой необходимо проводить регулировку, рассмотрим следующие параметры: вероятность безотказной работы \(P(t) \) и значение наработки \(t_{H} \), которая приравнивается к математическому ожиданию периода проведения регулировочных работ [3].

Интегрируя плотность распределения \(f(t) \), получаем интегральную функцию \(Q(t) \) и вычисляем ВВР по формуле:

\[P(t) = 1 - Q(t) . \quad (4) \]

Полученный график вероятности безотказной работы представлен на рис. 3.

Рис. 3. График вероятности безотказной работы ГРМ по параметру (зazor в клапанах)

Значение \(t_{H} \) является одной из важнейших характеристик (наряду с вероятностью безотказной работы) надежности, так как характеризует начало эксплуатации, приводящего к резкому росту массовых отказов. При этом наработка \(t_{H} \) принимается равной:

\[t_{H} = B \cdot g_{H}(\alpha) . \quad (5) \]

где
- \(g_{H}(\alpha) \) - функция, определяемая из таблиц или графиков работы (3).

Для нашего случая \(\alpha = 4.705, g_{H}(\alpha) = 0.142; \quad B = 1471, t_{H} = 0.142 \cdot 1471 = 208 \) м.ч.

Вероятность безотказной работы для периода \(t_{H} \) равна \(P(t) = 0.9634 \). Если следовать рекомендациям завода-изготовителя \((t_{H} = 300 \) м.ч.), то вероятность безотказной работы \(P(t) = 0.5482 \). Это означает, что у 45% двигателей зазоры в ГРМ будут выше предельного. Таким образом, периодичность регулировки клапанов, установленная заводом-изготовителем, возможно, применима для двигателей, установленных на тракторах, работающих в менее тяжелых условиях, чем лесные трактора. Учитывая тяжелую эксплуатационные режимы работы лесных тракторов, проверку зазоров в ГРМ необходимо производить при каждом ТО-1 (кратность проведения профилактических работ для лесных тракторов OTZ следующая: ТО-1 - 100 м.ч., ТО-2 - 300 м.ч., ТО-3 - 900 м.ч.) и при необходимости (зазор более 0,5, что соответствует наработке 215 м.ч.) проводить регулировку.

Литература