Совершенствование технологии разработки сезонно-мерзлых моренных грунтов буровзрывным способом

А. А. Германов
Петрозаводский государственный университет

В статье приводятся сведения о влиянии температуры воздуха, величины снежного покрова, влажности моренных грунтов на их глубину промерзания, а также об изменении механической прочности моренных грунтов по глубине промерзания. Дается краткий анализ технологии разработки мерзлых моренных грунтов и условий ее эффективного применения. Как наиболее эффективное и перспективное направление в технологии рыхления мерзлых моренных грунтов при глубине промерзания более 1 м предлагается буровзрывной способ с использованием рациональных конструкций зарядов для соответствующих ВВ с применением короткозамедленного взрываем.

Ключевые слова: мерзлые моренные грунты, прочность, технология рыхления ударами, буровзрывной способ, взрывчатые вещества (ВВ), способ взрыва, энергия взрыва, конструкция заряда.

СОДЕРЖАНИЕ

Анализ сведений об объемах земляных работ, выполняемых строительными и дорожными организациями Карелии, показал, что значительная часть их осуществляется в I и IV кварталах, т. е. когда грунты находятся в мерзлом состоянии. Особую трудность представляют мерзлые моренные грунты. Моренные грунты представляют собой неоднородные механические смеси плотных нераздробленных осадков с различным содержанием крупнообломочного материала: гравия, гальки, валунов. Количество валунов на единичной площади и по глубине не изменяется значительно.

Мощность мерзлых отложений колеблется от доли метра до нескольких десятков метров и, как показывает практика буровых работ, увеличивается с севера на юг.

Глубина промерзания моренных грунтов, определяющая толщину зоны высокой механической прочности, зависит от температуры наружного воздуха, величины снежного покрова, влажности грунта и его гранулометрического состава. Анализ результатов наблюдений метеорологических станций позволил нам построить график (рис. 1) изменения глубины промерзания грунтов в зависимости от температуры воздуха и толщины снежного покрова. Установлено, что для средней части Карелии глубина промерзания достигает величины 0,7 м во второй половине января (при наличии снежного покрова). Моренный грунт при промерзании следует рассматривать как четыре-, компонентную систему, состоящую из твердых минеральных частиц, связующего вещества (леда), воды и воздуха. По механической прочности грунт при промерзании находится в трех агрегатных состояниях: верхний слой - упругий, средний - упруго-пластичный, нижний - пластичный. На рис. 2 показан график изменения прочности грунта в зависимости от глубины промерзания.

Рис. 1. Изменение глубины промерзания в зависимости от температуры воздуха и толщины снежного покрова

Рис. 2. Изменение прочности грунта в зависимости от глубины промерзания

Рыхление сезонно-мерзлых моренных грунтов в настоящее время преимущественно выполняется механическим способом "клин-бабой" и рыхлителями на базе трактора.

Рыхление механизмами ударного действия ("клин-бабой") является низкоэффективным, сейсмически
Наличие в мерзлом моренном грунте валуных вклю-чений влияет на характер распределения волн напряжения. Формирование полостей грунтовой формы образуется в зонах, где имеется наименьшее сопротивление грунта давлению газов. Валуны различных форм и размеров, в массе расположенные хаотично и неопределенном ориентированным действием взрыва, тем самым отрицательно влияют на формирование зоны разрушения.

При выборе ВВ для производства взрывных работ в сезонно-мерзлых моренных грунтах с валунными включениями должны быть выполнены следующие требования:

- параметры ВВ должны обеспечить эффективное разрушение мерзлого неоднородного грунта;
- ВВ должно иметь пониженную чувствительность к механическим воздействиям;
- беготня не детонировать;
- обладать водостойкостью, низкой чувствительностью к механическим воздействиям;
- удельная стоимость энергии взрыва должна быть минимальной.

Опыт взрывных работ, проводимых Союзэнергопро- мом в Карелии, а также в других районах [3, 4, 5, 6, 7, 8, 9], показывает, что наиболее целесообразным ВВ для разрушения сезонно-мерзлых моренных грунтов являются аммониты EЖ, а также ВВ, имеющие пож-серию скорость детонации, такие, как зерногранулы 79/21, 80/20, и гранулы АС-4, в связи с тем, что энергоемкость разрушения грунтов снижается по мере увеличения длительности взрыва.

Вторым фактором, повышающим эффективность процесса разрушения мерзлых грунтов энергией взрыва зарядом ВВ, является оптимизация перерас-пределения энергии в канале шпата или свяжки за счет конструкции заряда. Цель перераспределения энергии заключается в том, чтобы большая часть ее была направлена на выполнение полезной работы. На основании анализа данных [3, 5, 10, 14, 15] и собст-венных поисковых работ предлагаются конструкции зарядов, изображенных на рис. 3.

![Рис. 3. Конструкции зарядов ВВ](image)

В зависимости от глубины и характера промерзания грунта и от необходимой степени его разрушения кон-струкция заряда может быть удлиненной или рассре-доточенной. Применение рассредоточенного заряда с
воздушным промежутком (рис. 3) позволит уменьшить начальное давление, увеличить действие взрыва на окружающий массив. Опыт [4, 5, 6, 11] показывает, что взрыв данной конструкции уменьшает выход негабарита в 2...10 раз и снижает выход ВВ на 10–30%. Использование в конструкции рассредоточенного заряда комбинированных ВВ (рис. 3а) с соотношением масс верхней и нижней части заряда от 1:3 до 1:5 [1, 2, 7] повышает эффективность взрыва.

Применение сосредоточенных зарядов [рис. 3а] в сезонно-мерзлых грунтах [8, 11, 13, 14] дает малый эффект, приводит к переизменению грунта в ближайшей зоне и не обеспечивает качественного дробления в верхней части, т. е. способствует образованию негабарита.

Качественный эффект можно получить от применения следующих конструкций зарядов, представленных на рис. 3 (г, б–ж, з). Наличие компенсационных полостей в виде скважины, шпура, камуфлажа способствует уменьшению рассеивания энергии в массиве, сосредоточению ее работы в ограниченном объеме. Для разработки мерзлых пластичных глин автор считает целесообразным применять камерфирные заряды с экраном, направленным в зону отрыва грунта, камуфляжные заряды с экраном и компенсационные камуфляжные полости, а также углубленные заряды с экраном (компенсатором) (рис. 3 ж).

Третьим фактором, способствующим повышению эффективности взрывных работ при разработке сезонно-мерзлых грунтов, является применение коротко-замедленного взрыва (КЗВ). Применение его снижает сейсмическое воздействие взрыва, улучшает качество дробления мерзлого грунта, дает возможность управлять взрывом. По данным [4, 5, 9, 12, 13], при КЗВ происходит интерференция взрывных волн от соседних зарядов, что способствует повышению времени воздействия взрыва на грунт с увеличением зоны рассеяния. В зависимости от условий производства работ выбирается способ КЗВ и средства взрыва.

Схему расположения зарядов соответствующих конструкций для участков производства работ целесообразно устанавливать опытным путем.

Бурение шпуров в мерзлых моренных грунтах с вулканическими включениями следует осуществлять ручными перфораторами типа ПР-24Г, ПР-30К с осевой продувкой шпура сжатым воздухом. Сжатый воздух для бурения машин должен поступать по гибким шлангам от передвижных компрессоров. В качестве средств бурения целесообразно применять буровые штанги со съемными коронками чашечной формы, армированные пластинками типа ВК-7, ВК-8. Для бурения скважин эффективнее применять буровые машины комбинированного действия типа ШПА, БТС-2, БТС-150, БМ-276 [1, 3, 4, 5, 7, 8, 10, 11].

Следует отметить, что осуществление высокопроизводительного бурения по мерзлым моренам грунтам с вулканическими включениями остается до сих пор актуальным.

В целях обеспечения безопасности исполнения работ и предохранения окружающей среды и объектов от разлета кусков взорванного мерзлого грунта следует применять защитные предохранительные устройства (локаторы), соответствующие данным условиям.

ЛИТЕРАТУРА

1. Афонин В. Г. Взрывные работы в строительстве. Киев: Будиевник, 1971. 175 с.
7. Евстропов Н. А. Взрывные работы в строительстве. М.: 1965. 207 с.
15. А. с. 616408 СССР, Кл. 21 С 37.00. Способ взрывания с экранированием.