Экспериментальная проверка и получение регрессионных зависимостей глубины проникновения пропиточной жидкости от влияющих на процесс факторов

В. А. Новиков
Петрозаводский государственный университет

На основании статистической обработки экспериментальных данных зависимости глубины проникновения пропиточной жидкости от влияющих на процесс факторов представлены регрессионные уравнения первого и второго порядков исследуемого процесса. Определены суммы остатков отклонения регрессионных моделей от экспериментальных данных, суммы остатков по независимым переменным, остаточные суммы остатков, значения F-статистики. Проверены на значимость коэффициенты регрессии первого и второго порядков. Показаны стандартные ошибки коэффициентов регрессии. Сделан вывод о достоверности полученных регрессионных уравнений. Представлены рекомендации по применению уравнений регрессии первого и второго порядков.

Ключевые слова: защитная обработка древесины, пропитка древесины, уравнения регрессионного процесса пропитки, важнейшие факторы.

ВВЕДЕНИЕ

Обеспечение требуемого уровня долговечности заготовок и изделий из древесины на этапе их производства - одно из основных направлений повышения эффективности леспромышленного комплекса. Способ защитной обработки в упругом механическом поле [1], представленный на рис. 1, позволяет значительно увеличить срок службы изделий и заготовок из древесины. Вместе с тем процесс движения жидкости в древесине в результате избыточного давления недостаточно изучен. На наш взгляд, с целью изучения процесса представляет интерес получение регрессионных зависимостей глубины проникновения пропиточной жидкости от влияющих факторов на основе экспериментальных исследований.

СОДЕРЖАНИЕ

С целью практической проверки на экспериментальной установке было определено влияние основных факторов. Это: C - коэффициент проницаемости образца, \(P_{max} \) - величина максимального давления в тушковых отверстиях достижима в эксперименте; \(t_0 \) - время достижения максимального давления; \(t_t \) - время выдержки максимального давления.

Значения ряда факторов, в связи с их изменением в течение эксперимента, контролировались и учитывались. Это: \(E_y \) - значение модуля упругости упругого элемента; \(\Delta h \) - величина деформации упругого элемента в эксперименте.

Остальные, влияющие на процесс параметры, в ходе экспериментальных исследований оставались постоянными. Это: коэффициент воздухоемкости древесины \(B_w = 0,66 \); плотность пропитывающей жидкости \(\rho = 10^5 \) кг/м³; пористость упругого элемента \(\Pi_y = 0,02 \); толщина упругого элемента \(h = 0,06 \) м; температура пропитывающей жидкости \(T = 20^\circ \)С; ускорение силы тяжести \(g = 9,81 \) м/с.

Величина капиллярной пропитки \(\Delta h_0 = 0,0001 \) м была определена в результате предварительных экспериментов.

Экспериментальная установка, методика проведения экспериментальных исследований, методика обработки экспериментальных данных отвечали всем требованиям, предъявляемым к подобного рода исследованиям.

В качестве используемых образцов были приняты заготовки сосны и березы, вырезанные из влажной части с возможным тангенциальным и радиальным направлениями пропитки.

Экспериментальная установка состоит из гидравлического пресса типа ПППР, позволяющего создавать усилие до 10,0 МПа (рис. 1). Упругий элемент с высушенными глиняными отверстиями выполнен из резины типа "резина-пластина" 60 МБ-А-Г ГОСТ 7338-65. Упругий элемент помещен в стальной короб с размерами 0,68 · 0,68 · 0,075 м. Высота упругого элемента составляет 0,06 м. В зоне контакта упругого элемента с поверхностью древесины вырезаны глухие отверстия с диаметром 0,008 м и глубиной 0,012 м. Отверстия расположены на поверхности упругого элемента в шахматном порядке с шагом в рядах 0,019 м и между рядами 0,009 м. При этом значение коэффициента пористости упругого элемента равно двум процентам. Глухие отверстия заполняются пропитывающей жидкостью. При помощи гидравлического пресса к заготовке из древесины, находящейся в контакте с пористой поверхностью упругого элемента, прикладывается повышенное по отношению к атмосферному давление. Имевшийся в комплекте с гидравлическим прессом манометр позволяет производить замер давления с точностью до 0,47 МПа.

Созданная экспериментальная установка для прессового способа пропитки дает возможность получать зависимости глубины проникновения жидкости в поверхность древесины от наиболее влияющих факторов: \(C, P_{max}, t, t_t \).
Покажем числовые значения суммарных статистик для линейной регрессионной модели зависимости глубины пропитки $\Delta \beta$ от времени t достижения максимального давления P_{max} времени выдержки максимального давления t_f и значения максимального давления P_{max}. Способ пропитки - прессовый.

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сумма остатков отклонения регрессионной модели от экспериментальных данных: 0,96461303</td>
</tr>
<tr>
<td>Сумма остатков по независимым переменным: 0,93047830</td>
</tr>
<tr>
<td>Остаточная сумма остатков: 0,92875462</td>
</tr>
<tr>
<td>Значение F статистики: 539,82</td>
</tr>
<tr>
<td>Вероятность отвергнуть гипотезу об адекватности модели линейной регрессии: $p=0,0000$</td>
</tr>
<tr>
<td>Стандартная ошибка оценки: 0,04398</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beta- знач.</th>
<th>Ее станд. ошиб.</th>
<th>Знач. коэф. регр.</th>
<th>Станд. ошибка коэф.</th>
<th>Значение t статист.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0,582</td>
<td>0,025</td>
<td>0,067</td>
<td>0,0029</td>
</tr>
<tr>
<td>t</td>
<td>0,508</td>
<td>0,025</td>
<td>0,017</td>
<td>0,00008</td>
</tr>
<tr>
<td>t_f</td>
<td>0,397</td>
<td>0,025</td>
<td>0,010</td>
<td>0,00006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сосна, ядро, радиальное направление</td>
</tr>
<tr>
<td>Сумма остатков отклонения регрессионной модели от экспериментальных данных: 0,96160983</td>
</tr>
<tr>
<td>Сумма остатков по независимой переменной: 0,92469346</td>
</tr>
<tr>
<td>Остаточная сумма остатков: 0,92282636</td>
</tr>
<tr>
<td>Значение F статистики: 495,26</td>
</tr>
<tr>
<td>Вероятность отвергнуть гипотезу об адекватности модели и линейной регрессии: $p=0,0000$</td>
</tr>
<tr>
<td>Стандартная ошибка оценки: 0,04648</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beta- знач.</th>
<th>Ее станд. ошиб.</th>
<th>Знач. коэф. регр.</th>
<th>Станд. ошибка коэф.</th>
<th>Значение t статист.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0,575</td>
<td>0,261</td>
<td>0,067</td>
<td>0,00307</td>
</tr>
<tr>
<td>t</td>
<td>0,518</td>
<td>0,261</td>
<td>0,001</td>
<td>0,00009</td>
</tr>
<tr>
<td>t_f</td>
<td>0,384</td>
<td>0,261</td>
<td>0,001</td>
<td>0,00006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Береза, ядро, радиальное направление</td>
</tr>
<tr>
<td>Сумма остатков отклонения регрессионной модели от экспериментальных данных: 0,95795519</td>
</tr>
<tr>
<td>Сумма остатков по независимым переменным: 0,91767814</td>
</tr>
<tr>
<td>Остаточная сумма остатков: 0,91563710</td>
</tr>
<tr>
<td>Значение F статистики: 449,61</td>
</tr>
<tr>
<td>Вероятность отвергнуть гипотезу об адекватности модели и линейной регрессии: $p=0,0000$</td>
</tr>
<tr>
<td>Стандартная ошибка оценки: 0,05539</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beta- знач.</th>
<th>Ее станд. ошиб.</th>
<th>Знач. коэф. регр.</th>
<th>Станд. ошибка коэф.</th>
<th>Значение t статист.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0,149</td>
<td>0,0115</td>
<td>13,4241</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0,575</td>
<td>0,261</td>
<td>0,00307</td>
<td>22,0317</td>
</tr>
<tr>
<td>t_f</td>
<td>0,384</td>
<td>0,261</td>
<td>0,001</td>
<td>0,00006</td>
</tr>
</tbody>
</table>
Таблица 4

Сосна, ядровое радиальное направление

Сумма остатков отклонения регрессионной модели от экспериментальных данных: 0,95781153
Сумма остатков по независимым переменным: 0,91740292
Остаточная сумма остатков: 0,91535506
Значение F статистики: 447,98
Вероятность отвергнуть гипотезу об адекватности модели и линейной регрессии: p<0,0000
Стандартная ошибка оценки: 0,05643

Во всех сериях опытов вероятность отвергнуть гипотезу о значимости коэффициентов регрессии близка к нулю.

Линейные уравнения регрессии (формулы 1, 2, 3, 4) в рассмотренных интервалах варьируемых факторов с хорошей достоверностью описывают процесс движения жидкости в древесине в результате избыточного давления. Вероятность отклонения коэффициентов регрессии равна нулю, это говорит о значимости каждого из них. Стандартная ошибка коэффициента регрессии не превышает 5,5% для прессового способа и 6,5% для фронтального, что также говорит о достоверности регрессионных моделей реальному процессу.

Полученные уравнения в исследуемых пределах позволяют делать выводы о характере влияния параметров на выходную величину. Так, наиболее влияющими факторами являются величина максимального давления P_{max} и значение коэффициента пропищемости C. Этот вывод подтверждается результатами исследований, сделанными ранее [2, 3].

Однако линейные уравнения регрессии не всегда корректно описывают многие физические процессы. К таким процессам можно отнести и процесс движения жидкости в древесине в результате избыточного давления. И поэтому представляет интерес построение нелинейных уравнений регрессии на основании результатов эксперимента.

Регрессионные уравнения второго порядка, полученные в результате статистической обработки той же самой экспериментальной базы данных, имеют следующий вид:

Береза, ядро, тангенциальное направление

\[\Delta \delta = -0.053978 P_{max} + 0.001946 t + 0.003046 t^2 - 0.000017 t^2 + 0.000640 P_{max} t - 0.000054 P_{max} t^2 + 0.085651 + \epsilon \]

(5)

Сосна, ядро, тангенциальное направление

\[\Delta \delta = -0.067066 P_{max} + 0.002066 t + 0.003041 t^2 - 0.002686 P_{max} + 0.000020 t^2 - 0.000010 t^2 + 0.000748 P_{max} t + 0.000050 P_{max} t^2 + 0.094741 + \epsilon \]

(6)

Береза, ядро, радиальное направление

\[\Delta \delta = -0.068998 P_{max} + 0.002915 t + 0.002649 t^2 - 0.000026 t^2 - 0.000010 t^2 + 0.000876 P_{max} t - 0.000118 P_{max} t^2 + 0.206849 + \epsilon \]

(7)

Сосна, ядро, радиальное направление

\[\Delta \delta = -0.086448 P_{max} + 0.002835 t + 0.002898 t^2 - 0.002656 P_{max} - 0.000026 t^2 - 0.000009 t^2 + 0.000892 P_{max} t - 0.00000134 P_{max} t^2 + 0.188587 + \epsilon \]

(8)

Уравнения регрессии второго порядка точнее описывают процесс движения пропищемочной жидкости в древесине в результате избыточного давления. Это объясняется тем, что они более приближены к реальному процессу [2].

В уравнениях (5, 7) отсутствуют значения коэффициентов $P_{max} t$ и $t t$, а в уравнении (6) - только $t t$. В результате статистической обработки эти значения были признаны незначимым и исключены из соответствующих уравнений. Вместе с тем в уравнении (8) значение коэффициента $P_{max} t^2$ имеет меньшую степень значимости, что косвенным образом подтверждает правомерность исключения этого коэффициента из показанных выше уравнений как незначимых.

Уравнения регрессии второго порядка (формулы 5, 6, 7, 8) в рассмотренных интервалах с большей достоверностью, чем уравнения регрессии первого порядка, описывают процесс движения жидкости в древесине в результате избыточного давления. Об этом говорит и более корректная оценка значимости коэффициентов регрессии.

Вероятность отклонения коэффициентов регрессии, оставленных в уравнениях после проверки на значимость, достигает 13%. Стандартная ошибка коэффициентов регрессии не превышает 1,8%. Для сравнения, стандартная ошибка коэффициентов регрессии линейных уравнений достигает 7,8%. В целом значения стандартных ошибок коэффициентов регрессии
уравнений первого порядка имеют большее значение, что опять же подтверждает вывод о большей достоверности уравнений второго порядка по сравнению с линейными для решаемой задачи.

Полученные нелинейные уравнения регрессии в исследуемых пределах позволяют точнее делать выводы о степени влияния различных параметров на выходную величину, давать численную оценку того либо иного параметра. Выводы о влиянии параметров на выходную величину подтверждают и общие выводы, сделанные по линейным уравнениям регрессии.

Линейные уравнения регрессии рекомендуется использовать в тех случаях, когда достаточно лишь получения приближенной оценки зависимости.

Очевидно, что представленные выше регрессионные уравнения позволяют решать различного рода вариационные и оптимизационные задачи по исследованию процессов движения жидкости в древесине в результате избыточного давления исходя из поставленных начальных условий.

ЛИТЕРАТУРА

1. Новиков В. А. Определение выходных параметров при защитной обработке изделий из древесины в упругомеханическом поле. // Тр. лесоинженерного факультета ПетрГУ. Вып. 1. Петроразводск, 1996.

2. Оснан Н. А. Проницаемость и проводимость древесины. М., 1964. 128 с.